Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Exp Eye Res ; 204: 108461, 2021 03.
Article En | MEDLINE | ID: mdl-33516761

PURPOSE: Fibrillin-1 and -2 are major components of tissue microfibrils that compose the ciliary zonule and cornea. While mutations in human fibrillin-1 lead to ectopia lentis, a major manifestation of Marfan syndrome (MFS), in mice fibrillin-2 can compensate for reduced/lack of fibrillin-1 and maintain the integrity of ocular structures. Here we examine the consequences of a heterozygous dominant-negative mutation in the Fbn1 gene in the ocular system of the mgΔlpn mouse model for MFS. METHODS: Eyes from mgΔlpn and wild-type mice at 3 and 6 months of age were analyzed by histology. The ciliary zonule was analyzed by scanning electron microscopy (SEM) and immunofluorescence. RESULTS: Mutant mice presented a significantly larger distance of the ciliary body to the lens at 3 and 6 months of age when compared to wild-type, and ectopia lentis. Immunofluorescence and SEM corroborated those findings in MFS mice, revealing a disorganized mesh of microfibrils on the floor of the ciliary body. Moreover, mutant mice also had a larger volume of the anterior chamber, possibly due to excess aqueous humor. Finally, losartan treatment had limited efficacy in improving ocular phenotypes. CONCLUSIONS: In contrast with null or hypomorphic mutations, expression of a dominant-negative form of fibrillin-1 leads to disruption of microfibrils in the zonule of mice. This in turn causes lens dislocation and enlargement of the anterior chamber. Therefore, heterozygous mgΔlpn mice recapitulate the major ocular phenotypes of MFS and can be instrumental in understanding the development of the disease.


Disease Models, Animal , Fibrillin-1/genetics , Marfan Syndrome/genetics , Mutation/genetics , Animals , Ciliary Body/metabolism , Ciliary Body/ultrastructure , Ectopia Lentis/genetics , Extracellular Matrix Proteins/metabolism , Lens, Crystalline/metabolism , Lens, Crystalline/ultrastructure , Ligaments/ultrastructure , Male , Marfan Syndrome/pathology , Mice , Mice, Inbred C57BL , Microfibrils/ultrastructure , Microfilament Proteins/metabolism , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Phenotype
2.
PLoS One ; 10(2): e0117835, 2015.
Article En | MEDLINE | ID: mdl-25710816

Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant-T2-measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.


Magnetic Resonance Imaging , Muscular Dystrophy, Animal/diagnostic imaging , Animals , Cluster Analysis , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/pathology , Radiography
3.
Int J Biochem Cell Biol ; 53: 262-70, 2014 Aug.
Article En | MEDLINE | ID: mdl-24878610

The stromal derived factor (SDFs) family comprises a group of molecules generated by stromal cells. SDF1 and SDF4 are chemokines; SDF2 and SDF5 are not yet functionally and structurally defined. In human and mouse, Sdf2 has a paralogous gene, Sdf2l1, whose protein sequences are 78% similar and 68% identical. Human SDF2L1 is an endoplasmic reticulum-stress inducible-gene. In Arabidopsis thaliana, SDF2-like (39% and 37% amino acid sequence identity with Mus musculus Sdf2 and Sdf2l1) has also been implicated in activating the UPR in ER-stress. Here we have cloned, expressed and purified recombinant Sdf2 and raised an anti-Sdf2 antibody. We demonstrated that the protein is expressed in several tissues and is localized in the endoplasmic reticulum. We suggest that Sdf2, initially predicted as a secretory protein because it lacks the canonical ER retention signals in its C-terminal, could be ER-resident through accessory binding proteins or other amino acid sequence motifs, as suggested for the homolog protein SDF2-like. Furthermore, the crystal structure of SDF2-like from Arabidopsis thaliana is a typical ß-trefoil containing three MIR motifs; all hydrophobic residues considered important for maintaining the bottom layer of the ß-trefoil barrel seem to be conserved in the Sdf2 family. Multiple alignment using 43 sequences for SDF2 and 38 for SDF2L1 paralogous families also revealed a very similar residue conservation profile. Comparing the amino acid sequence and predicted 3D structure with other Sdf2-like proteins we suggest a role of mouse Sdf2 in the Unfolded Protein Response and ER-stress, similar to that of Sdf2l1 from human and mouse and SDF2-like from Arabidopsis thaliana. Chronic ER stress has been associated with many human diseases including cancer and diabetes. Identification of new factors associated with the ER stress pathway can help to identify and define key targets of this response.


Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum/genetics , Proteins/genetics , Unfolded Protein Response/genetics , Amino Acid Sequence/genetics , Animals , Arabidopsis/genetics , Conserved Sequence , Gene Expression Regulation, Developmental , Humans , Mice , Organ Specificity , Proteins/chemistry , Proteins/metabolism
4.
Arch Insect Biochem Physiol ; 64(1): 1-18, 2007 Jan.
Article En | MEDLINE | ID: mdl-17167750

Bostrichiformia is the less known major series of Coleoptera regarding digestive physiology. The midgut of Dermestes maculatus has a cylindrical ventriculus with anterior caeca. There is no cell differentiation along the ventriculus, except for the predominance of cells undergoing apocrine secretion in the anterior region. Apocrine secretion affects a larger extension and a greater number of cells in caeca than in ventriculus. Ventricular cells putatively secrete digestive enzymes, whereas caecal cells are supposed to secrete peritrophic gel (PG) glycoproteins. Feeding larvae with dyes showed that caeca are water-absorbing, whereas the posterior ventriculus is water-secreting. Midgut dissection revealed a PG and a peritrophic membrane (PM) covering the contents in anterior and posterior ventriculus, respectively. This was confirmed by in situ chitin detection with FITC-WGA conjugates. Ion-exchange chromatography of midgut homogenates, associated with enzymatic assays with natural and synthetic substrates and specific inhibitors, showed that trypsin and chymotrypsin are the major proteinases, cysteine proteinase is absent, and aspartic proteinase probably is negligible. Amylase and trypsin occur in contents and decrease along the ventriculus; the contrary is true for cell-membrane-bound aminopeptidase. Maltase is cell-membrane-bound and predominates in anterior and middle midgut. Digestive enzyme activities in hindgut are negligible. This, together with dye data, indicates that enzymes are recovered from inside PM by a posterior-anterior flux of fluid outside PM before being excreted. The combined results suggest that protein digestion starts in anterior midgut and ends in the surface of posterior midgut cells. All glycogen digestion takes place in anterior midgut.


Coleoptera/enzymology , Digestive System Physiological Phenomena , Enzymes/metabolism , Gastrointestinal Tract/enzymology , Intestinal Absorption/physiology , Intestinal Secretions/physiology , Animals , Chitin/analysis , Chromatography, Ion Exchange , Fluorescein-5-isothiocyanate , Gastrointestinal Tract/ultrastructure , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Wheat Germ Agglutinins
...